
Formal Data Validation
Formal Techniques Applied to Verification of Data Properties

Mathieu Clabaut1, Christophe Metayer2, and Éric Morand3

1 Systerel, Aix-en-Provence, France mathieu.clabaut@systerel.fr
2 Systerel christophe.metayer@systerel.fr

3 CNES, Toulouse, France eric.morand@cnes.fr

Abstract. Nowadays lot of critical systems used in aeronautic, aerospace, automotive and railway domains are
designed to be highly configurable. In such systems, the data configuration validity is of tremendous importance.
The railway domain does already apply some formal techniques to validate configuration data. This study, funded
by the CNES, demonstrates the suitability of such methods for validation of flight software configuration data.
Topic. Dependability, safety, security, quality of service
Domain. Verification and validation

1 Context and Goals

1.1 Context

Complex systems in the aerospace domains are re-
quired to be more and more adaptable and reusable,
and hence tend to be based on generic software con-
figured by means of data parameters.

Validation of such generic software follows two ap-
proaches: either the generic software and its configura-
tion are validated together for the targeted deployment
or the software and its configuration are validated sepa-
rately if possible or else in a two stage validation where
data are validated before the configured software.

Our experience about data validation is that:

– it is often done by procedural means, an ad-hoc
software being developed to achieve the verifica-
tion.

– properties on configuration data, whenever identi-
fied are often considered as second class citizens.

It has been shown that such verification tools are
difficult to maintain when the properties evolve.

The algorithmic implementation of the properties
not only is being written by someone who is not ac-
quainted to the domain they are related to (namely a
software designer) but also has the unwanted side ef-
fect of obfuscating them. An external assessor thus has
the greatest difficulties to ensure that desired proper-
ties are those verified by the tool.

Based on some successful experiments on apply-
ing formal techniques to validation of configuration data
for the railway domain, we were willing to apply them to
space flight software, and especially to basic software
(BSW) configurations.

1.2 Goals and Planning

Expected benefits of the study are:

– clear property identification and formalisation;
– automatic property verification on binary code;
– demonstration of feasibility, usability and improve-
ments over previous verifications.

Two main tasks were devised when planning the
study:

1. harvest the known and possibly unknown proper-
ties of BSW data configuration and formalize them
within a rather simple mathematical language (first
order predicate, set theory).

2. write some tools to automatically extract data from
binary code and verify the properties on these data.

1.3 Data Validation for Railways

A bit of history Historically, interlocking systems were
designed by means of physical levers and cotter pins
and were carefully designed to avoid enabling conflict-
ing routes. A century ago, all-electric interlocking made
up of electrical relays began to be designed. However
each interlocking system is still specifically designed to
avoid enabling conflicting routes on a well defined area.

Since the late 1980s, most interlocking engines are
fully implemented in software. As the cost for develop-
ing such a SIL4 system is quite high, manufacturers are
faced with the problem of designing a generic enough
interlocking engine4 which would accommodate most
of the existing ground configurations by means of con-
figuration.

Such a (big) configuration data set is then a full con-
tributor to the global safety level, and as such must be
validated thoroughly.

4 Note that other subsystems of automatic train protection systems have the same requirements upon safe and voluminous
configurations.



Data Validation, the old way Validating huge data
configuration set against complex properties is quite a
daunting task, and needs automation. For this purpose,
manufacturers began to develop software specifically
designed to verify the configuration data set against
some expected properties.

Those software were written in C or C++ and the
expected properties as well as the format of the con-
figuration data were hard-coded in their internals. The
following consequences soon arose:
validation cost: the whole data validation software

has to be validated, not only the properties,
actors involved: the domain experts have no means

to check that the properties verified by the soft-
ware are the expected ones and conversely, the
software engineers aren’t domain specialists. This
sometime leads to inconsistency between what
was checked and what ought to be checked,

evolution cost: modification of a property requires to
modify the software and to revalidate it,

product line: developing a similar subsystem re-
quires to develop again most of the data validation
software

The whole process was cumbersome, error prone
and expensive.

Data Validation, the new way Some years ago, RATP
began to rethink the way configuration data were vali-
dated and a tool was developed upon the opensource
platform Rodin [2] to validate those data against safety
properties which would be formally specified.

The chosen formal language is a subset of the B
language [4] which can simply be seen as a first or-
der predicate logic over set theory using a notation
which shares a lot with standard mathematical notation
(∃,∀,∨,∧,∪,…) which was perfected for several cen-
turies and is well understood by most engineers and
which, due to its formal nature, is also understandable
by computers (see figure 1).

Fig. 1.Mathematical formal language as the best com-
promise between human and computer

The foundations were then laid for the building of a
modular software platform allowing verification of for-
mal properties over a wide range of data.

The following sections will elaborate a bit on the
case study perimeter, properties and data considered,
tools developed and used and the results obtained.

2 Case Study
We describe hereafter the chosen case study which
consists in the configuration of the GPMU BSW.

2.1 Satellite GPMU
The Generic Payload Management Unit (GPMU) is the
part of the satellite (hardware and software) in charge
of hosting the payload software which will provide the
set of functions enabling the satellite to fulfill its mission
(by contrast with the platform part, which provides basic
services like energy sources and positioning system).

The GPMU architecture is described in figure 2, and
is based on the XtratuM hypervisor [3].

Onboard processor

Hypervisor

BSWRTEMSOther OS

Other 
Mission 
Specific 

Partitions

Real-Time 
Mission 
Specific 

Partitions

CU Mana-
gement

Partitions

Fig. 2. GPMU architecture

GPMU is composed of a resident software (not
shown) which loads and launches the hypervisor which
offers a spatial and temporal partitioned environment
for running different OS. The hypervisor virtualises ser-
vices offered by the physical platform in order to make
them available to the various hosted OS.

The Basic Software (BSW) is a subsystem which
isolates the payload management functions from the
mission specific functions. It is composed of several
distinct partitions which offer functions related to:
– mode management,
– inter-partition I/O management,
– non volatile memory management,
– hardware and instrument events management, …
We will focus our analysis on the MMDL BSW par-

tition which offers high level services to manage appli-
cation partitions (memory mapping, partition monitor-
ing,…), and on the IOSERVER BSW partition which of-
fers services to manage inter-partition and device com-
munications. Those services are provided by mean of
the PMU protocol and all partitions, whether they be-
long to the Basic Software or not, will use the PMU pro-
tocol for inter-partitions communications with the Ba-
sic Software. Others communications, for instance be-
tween two non BSW partitions, can be opaque and so
may not use the PMU protocol.

Partitions outside BSW offer mission specific func-
tionalities.

Page 2/7



2.2 Partitions Configuration

While each development team is responsible for its par-
tition development, the person responsible for integra-
tion shall produce the hypervisor configuration table by
fulfilling the following tasks:

– collect characteristics and constraints for each par-
tition,

– configure the hypervisor with each partition (mem-
ory mapping, …),

– configure the I/O management for each partition,
– configure the inter-partition I/O ports,
– configure the I/O scheduler,
– configure the partition scheduler,
– test and validate the global GPMU behaviour.

Our study will concentrate on the production of
the BSW MMDL and IOSERVER configuration tables,
whose complexity comes from the number of depen-
dencies between the a priori chosen partition scheme,
and the a posteriori constraints (I/O, memory mapping,
…).

3 Properties

3.1 What does Data Validation mean?

And what are data anyway? The set of considered data
are constants that contribute to the configuration of a
system. They may be

– physical constants,
– parametric constants which are used to define a
command law,

– mission specific constants (which may be up-
loaded),

– parametric constants specific to the design
choices,

– validation and test data,
– constant produced while defining the configuration
data (authors, creation date, version, integrity,…)

Properties link different types of data. They exist in-
dependently from the system being active or not and
define invariants over the system.

Validating data is the act of verifying that the con-
figuration data verify the properties (most often, safety
ones) identified.

Of course, validating data is necessary but not suffi-
cient to ensure the correctness of the system behavior.

3.2 Property Identification

The first part of the job is to informally identify which
properties shall be verified by the configuration data.
The following available documentation was taken into
account:

– XtratuM hypervisor User Manual,
– XtratuM hypervisor Reference Manual,

– BSW User Manual,
– A first identification of some coherence rules.

We began to dig out and express in natural language
some required properties, which may be categorized
as follow:

A properties relative to the domain of scalar constants.
One shall mainly verify that a scalar parameter is
defined within its bounds or that its extremum val-
ues are compatible with the hypervisor configura-
tion,

B equality constraints.
For example, verify that the size of a structure is
equal to the value of another parameter,

C parameter typing.
Verify that all data loaded in a structure respect the
structure type,

D coherence between data.
For example, check that some memory spaces are
disjoints for a given partition, or that the communi-
cation port characteristics for interconnected ports
are compatibles, or check unicity within specified
structures…

The configuration scheme chosen for the BSW
which compiles configuration files written with the help
of the C language, ensures that properties of type C
are verified. Those properties won’t then be addressed
in the following.

An example of simple property of type A, extracted
from the available documentation is shown hereafter in
figures 3 and 4. The actual configuration as found in the
.c file is shown in figure 5.

Parameter Description Value
MIN_MEMORY_OPERATION_PORT_SIZE MIN size of memory re-

quest ports (bytes)
48

MAX_MEMORY_OPERATION_PORT_SIZE MAX size of memory
request ports (bytes)

256

Fig. 3. Constraints on memory port size bounds as de-
fined in the BSW manual

Parameter Description Min Max
MMDL_Memory_In_Port_Size Size of the port used to re-

ceived memory operation re-
quests (bytes)

48 256

MMDL_Memory_Out_Port_Size Size of the port used to send
memory operation results (bytes)

48 256

Fig. 4. Constraints on memory port size as defined in
the BSW manual

UInt16 sMmdlMemOpInPortSize = 128;
UInt16 sMmdlMemOpOutPortSize = 128;

Fig. 5.Memory port size as defined in the configuration
file (C language)

A more complex property of type C is inferred from
our understanding of the system and from actual data
configuration as shown in figure 6. It says that memory
mapping defined for a given partition id are disjoints.

Page 3/7



MmdlSMemoryArea tMmdlMemoryMappingTable[14] =
{

{0x34000, 0x17000 , 1, PARTITION_CODE, FLASH},
{0x4B000, 0x800 , 1, CONFIG_TABLE, FLASH},
{0x4B800, 0x200 , 1, CUSTOM_TABLE, FLASH},
{0x4C000, 0xC000 , 2, PARTITION_CODE, FLASH},
{0x4B000, 0x800 , 2, CONFIG_TABLE, FLASH},
{0x5C000, 0x10000 , 3, PARTITION_CODE, FLASH},
{0x40070000, 0x1C0000, 1, PARTITION_CODE, RAM},
{0x40230000, 0x20000 , 1, CONFIG_TABLE, RAM},
{0x40250000, 0x20000 , 1, CUSTOM_TABLE, RAM},
{0x40270000, 0xC000 , 2, PARTITION_CODE, RAM},
{0x4027C000, 0x4000 , 2, CONFIG_TABLE, RAM},
{0x40280000, 0x10000 , 3, PARTITION_CODE, RAM},
{0x40260000, 0x400 , 2, CUSTOM_TABLE, RAM},
{0xA0000, 0x100 , 1, NONE, FLASH}

};

Fig. 6. Memory mapping table

Some propertiesmay also come from standard con-
formance or from other design constraints, like saying
that existing hardware should be used when possible.
One example of such a property is: UART components
have normalized speeds.

However it is often very difficult to exhaustively
identify properties that should hold upon configuration
data once system design is over.

This last statement promotes an early integration of
property management in a system development cycle.

3.3 Property Formalisation

Once the properties are identified, we define a formal
model which describes the data constants and proper-
ties as axioms over the constants. The use of event-B
[1] allows us to decompose the model as shown here-
after.

.
.
ranges defi-
nition context

.
type definition

context

.
Partition
Info model

.
Memory Map-
ping model

.
Monitored
Partition
model

.extends
.extends.ext

end
s .extends

Fig. 7. Constant and property model architecture for MMDL partition

Two models were defined, one for the MMDL par-
tition which defines the properties about the memory
mapping table, the partition information table and the
monitored partitions table; and one for the IOSERVER
partition which defines the properties about the device
description table and the scheduling plan table.

/ / Range d e f i n i t i o n f o r memory opera t ion po r t s i ze
@axm1 : MIN_MEMORY_OPERATION_PORT_SIZE ∈ ℕ
@axm2 : MAX_MEMORY_OPERATION_PORT_SIZE ∈ ℕ

/ / In and Out po r t s i ze d e f i n i t i o n
@axm1 : sMmdlMemOpInPortSize ∈ ℕ
@axm2 : sMmdlMemOpOutPortSize ∈ ℕ

/ / Ac tua l p roper ty over the po r t s i ze being i n i t s
range

@axm11: sMmdlMemOpInPortSize ∈
MIN_MEMORY_OPERATION_PORT_SIZE
‥ MAX_MEMORY_OPERATION_PORT_SIZE

@axm12: sMmdlMemOpOutPortSize ∈
MIN_MEMORY_OPERATION_PORT_SIZE
‥ MAX_MEMORY_OPERATION_PORT_SIZE

The constraint about disjoint memory mapping be-
ing defined for a given partition id may be formalized
as follow5:

/ / MmdlSMemoryArea f i e l d s d e f i n i t i o n
@axm4 : StartAddress ∈ 1 ‥ MemoryMappingTableSize → ℕ
@axm5 : Length ∈ 1 ‥ MemoryMappingTableSize → ℕ
@axm6 : PartitionID ∈ 1 ‥ MemoryMappingTableSize → ℕ

/ / p roper ty f o r d i s j o i n t memory mapping
@axm9 : ∀ i,j ·  i ∈ dom(StartAddress)

∧ j ∈ dom(StartAddress)
∧ i ∈ dom(Length) ∧ j ∈ dom(Length)
∧ i ∈ dom(PartitionID) ∧ j ∈ dom(PartitionID)
∧ i ≠ j
∧ PartitionID(i) = PartitionID(j)

⇒ StartAddress(i) ‥ StartAddress(i)+Length(i) − 1
∩ StartAddress(j) ‥ StartAddress(j)+Length(j) − 1
= ∅  

Where dom(f) denotes the domain of function f.
The constraint about UART speeds may be formal-

ized as follow:
/ / Constant d e f i n i t i o n and typ ing

@axm2 : partition(COMPONENT_TYPE,
{UART}, {I2C}, {OSlink})

@axm7 : Speed ∈ 1 ‥ DeviceDescriptionTableSize → ℕ

@axm8 : ComponentType ∈
1 ‥ DeviceDescriptionTableSize → COMPONENT_TYPE

/ / Ac tua l p roper ty
@axm13 : ∀y · y ∈ dom(Speed)

∧ y ∈ dom(ComponentType)
∧ ComponentType(y) = UART
⇒ ran(Speed) =

{110,300,1200,2400,
4800,9600,19200,38400,
 57600,115200,230400}

Where ran(f) denotes the range of function f.

Beyond the possibility of data validation, having de-
fined such a formal model for properties allows:

– a formal expression not only for the properties but
also for the associated data structures,

– a proof of well-definedness of properties and a ver-
ification of their types,

– the use of a simple and common enough formal-
ism, shared by the different actors,

– a separate validation for the proof mechanism and
for the data (the proof mechanism shall be vali-
dated only once),

5 where A → B is the set of total function from A to B.

Page 4/7



4 Data Extraction

4.1 General Case

From our previous experiences in validating data for
the railway domain, it appears that data may come from
various sources and be encoded into various formats
(DBMS, XML files, structured text files, flat text files,
ADA or C source code). It is not conceivable to devise
a piece of software which would be able to manage
such a variety of sources and format.

Thus the software that verifies formal properties on
data (lets call it data prover) was designed to be data
source agnostic but expandable by means of plug-ins
to be able to get data from sources that were not envi-
sioned at the time of initial design.

Extractor base
code

Data
Extractor

Configuration
Table.h

generate and compi
le

Binary
Configuration.o

Extracted 
data.xml

Formal
properties

Data Prover

OK KO

Fig. 8. Data extraction and verification process

4.2 GPMU Case

The configuration data for the GPMU are built by mean
of .c source files compiled into binary objects and
linked within the XtratuM platform.

With safety in mind, we want to check the data as
late as possible in the configuration process in order to
prevent as much as possible data corruption to happen
after the verification being done.

The very last place where most of the configuration
data may still be understandable for an external piece

of software, is in the ELF binary object produced by
compiling the configuration .c source files. However
data types may not be inferred from the binary ELF file
and shall be provided to the extractor by another chan-
nel.

With the objective to be as efficient as possible, we
have chosen to develop an extractor with buit-in data
type information. It is a bit less convenient as the ex-
tractor shall be compiled again when the data types
change, but it allows us to exhibit some results in a lim-
ited time and budget.

The overall process is shown in figure 8 hereafter.

5 Tools

A short overview of the tools developed or used during
this study is given is the following section. The tools
are:

– a data extraction tool for harvesting configuration
data from binary objects,

– a formal development platform for checking that
properties were well typed and well defined (i.e.
meaningful),

– the core of the data prover tool, which was im-
proved and used over the properties and associ-
ated configuration data.

5.1 Data extraction from Binary Objects

A tool was coded in C, to extract the data from the bi-
nary objects based on their ELF format, which by mean
of relocation tables allows us to find values of constants
defined as static const in the .c piece of code
which defines the configuration data.

In order to simplify the whole development, the ex-
pected data types, which can not be inferred from the
data provided by the ELF format, are hard-coded in the
extractor tool which produces a simple XML file. This
XML file will then be used by a small data prover plug-
in to translate the XML representation into the targeted
internal data constant representation.

An extract of such an XML file obtained from actual
analysis of binary configuration objects is shown in fig-
ure 9.

Page 5/7



<?xml version="1.0" encoding="ISO-8859-1"?>

<constants>
<scalar name="lOutDataRxQueuingPortsNumber" type="UInt32

" value="3"/>

<scalar name="lInDataTxQueuingPortsNumber" type="UInt32"
value="3"/>

<scalar name="lOutDataAckQueuingPortsNumber" type="
UInt32" value="3"/>

<array name="cTableOutDataRxPortNames" type="Int8*">
<string value="QIOPFTCO"/>
<string value="QIOI1TMO"/>
<string value="QIOI2TMO"/>

</array>
<array2 name="cInDataTxConnectionTable" type="UInt8">

<row>
<number value="1"/>
<number value="0"/>
<number value="0"/>

</row>
<row>

<number value="0"/>
<number value="1"/>
<number value="0"/>

</row>
<row>

<number value="0"/>
<number value="0"/>
<number value="1"/>

</row>
</array2>
</constants>

Fig. 9. Intermediate XML data description extracted
from binary objects (short extract)

5.2 Static Checking of Formal Properties
We choose to use the existing Rodin [2] platform as
supporting tool to develop the formal model of proper-
ties. It brings the following advantages:
– easy input of mathematical formulas,
– easy formula reading by mean of UTF8 characters
and syntax highlighting,

– use of event-B [1] model structures to decompose
the formal model,

– transparent type checking of the formal model,
– transparent proof obligation generation for well-
definedness,

– transparent automatic proving attempt of those
proof obligations,

– assisted manual prover for the remaining undis-
charged proof obligations if any,

– easy model import by the data prover.
Thus, while any data verification tool developed in a

low level language (say C, for example) would have al-
lowed to check a string pointer against an integer with-
out any hiccup, it won’t even be possible to type check
the corresponding property in our formal model.

This definitely leads to a data validation of better
quality.

5.3 Data Validation against Formal Properties
The last tool developed within this study is the core
data prover, based on existing pieces of code from the
Rodin platform, which once fed with:

– the formal context defined as event-B contexts
components,

– the properties to be verified defined as event-B ax-
ioms in terms of constant and types defined in the
associated contexts,

– the data XML file produced from the binary config-
uration objects by the data extractor tool,

will verify in turn each property (axiom) against the pro-
vided data and will produce a status similar to the one
provided in figure 10.
OK axm1: lOutDataRxQueuingPortsNumber ∈ ℕ
OK axm2: lOutDataRxQueuingPortsNumber ≤

OUT_DATA_RX_QUEUING_PORTS_MAX_NUMBER
OK axm3: lInDataTxQueuingPortsNumber ∈ ℕ
OK axm4: lInDataTxQueuingPortsNumber ≤

IN_DATA_TX_QUEUING_PORTS_MAX_NUMBER
OK axm5: lOutDataAckQueuingPortsNumber ∈ ℕ
OK axm6: lOutDataAckQueuingPortsNumber ≤

OUT_DATA_ACK_QUEUING_PORTS_MAX_NUMBER
OK axm7: cTableOutDataRxPortNames ∈ 0 ‥ (

lOutDataRxQueuingPortsNumber − 1) ↣ ℕ
OK axm8: cTableInDataTxPortNames ∈ 0 ‥ (

lInDataTxQueuingPortsNumber − 1) ↣ ℕ
OK axm9: cTableOutAckPortNames ∈ 0 ‥ (

lOutDataAckQueuingPortsNumber − 1) ↣ ℕ
OK axm10: ran(cTableOutDataRxPortNames) ∩ ran(

cTableInDataTxPortNames) ∩ ran(cTableOutAckPortNames)
= ∅

OK axm11: lTableOutDataRxPortSizes ∈ 0 ‥ (
lOutDataRxQueuingPortsNumber − 1) → ℕ

OK axm12: ∀y ·y ∈ ran(lTableOutDataRxPortSizes) ⇒ y ∈
OUT_DATA_RX_PORTi_MIN_MSG_SIZE ‥
OUT_DATA_RX_PORTi_MAX_MSG_SIZE ∧ y mod 4=0

OK axm13: lTableInDataTxPortSizes ∈ 0 ‥ (
lInDataTxQueuingPortsNumber − 1) → ℕ

OK axm14: ∀y ·y ∈ ran(lTableInDataTxPortSizes) ⇒ y ∈
IN_DATA_TX_PORTi_MIN_MSG_SIZE ‥
IN_DATA_TX_PORTi_MAX_MSG_SIZE ∧ y mod 4=0

OK axm15: lIoDevicesNumber ∈ ℕ
KO axm16: lIoDevicesNumber ≤ IO_DEVICES_MAX_NUMBER
OK axm17: partition(CONNECTION_STATUS,{ON},{OFF})
KO axm18: cInDataTxConnectionTable ∈ 0 ‥ (

lInDataTxQueuingPortsNumber − 1) × 0 ‥ (
lIoDevicesNumber − 1) → CONNECTION_STATUS

OK axm19: ∀·yy ∈ 0 ‥ (lInDataTxQueuingPortsNumber − 1)
⇒(({y} × ℕ) ◁ cInDataTxConnectionTable ▷ {ON})∼ ∈
CONNECTION_STATUS 7→ ℕ × ℕ

KO axm20: cOutDataRxConnectionTable ∈ 0 ‥ (
lOutDataRxQueuingPortsNumber − 1) × 0 ‥ (
lIoDevicesNumber − 1) → CONNECTION_STATUS

Fig. 10. Verification results (where some properties are
falsified)

6 Results

6.1 Achieved Work

This study allowed us to show that the validation of
data based on formal property expression, which has
already been used in the railway domain is also appli-
cable to on-board basic software configuration for the
space domain.

Even if the properties verified in this study are most
often simple ones, our past experience has shown that
such a process scales well to more complex properties

Page 6/7



upon a lot of data provided that associated data are
easy enough to extract6.

It was also shown that a difficult task is to identify the
properties to be checked. They are not always written
down in available documentation. Having to formalize
the properties won’t help much in finding them, but it
is a great mean to capitalize those properties and to
integrate them in the whole development cycle.

6.2 Further work

Domain of Application It would be interesting to extend
the data verification for on-board software to complete
satellite system (including the satellite platform, with its
related configuration and calibration constraints).

There are also probably lots of other domains out-
side railways and space that may benefit of such an
approach, provided people are conscious of the exis-
tence and the role of the properties that should hold
upon their configuration data.

Tool Improvements Tools developed within this study
may be improved in several ways:

– data extraction should not need recompilation upon
data type change,

– natural language expression of properties shall be
integrated into the formal model or a document
shall be produced mixing formal and informal ex-
pression of properties to allow validation by domain
experts.
The report result should also refer to the natural
language expression of properties,

– a user interface should be provided to allow inspec-
tion of the data set that falsifies a property, to ease
the spotting of the configuration data responsible
for the property falsification.

Get More from Formal Methods We could imagine to
integrate completely the verification framework within
the Rodin platform, by making the property verification
tool being one of the available prover. It would allow
verifiers to decompose and prove very complex prop-
erties with the help of the whole tool set without restrict-
ing to symbolic evaluation.

Identifying Properties Afterward is probably one of
the most difficult point raised by this study. Having the
tools and methods for deploying easy data validation
would probably be a good incentive for including prop-
ertymanagement since the beginning of the system de-
velopment cycle.

References

[1] Event-b — a formal method for system-level modelling
and analysis. http://www.event-b.org/.

[2] Rodin — rigorous open development environment for
complex systems. http://rodin.cs.ncl.ac.uk/.

[3] Xtratum. http://www.xtratum.org/.
[4] J.-R. Abrial. The B-book: assigning programs to mean-

ings. Cambridge University Press, New York, NY, USA,
1996.

Glossary

BSW Basic Software
ELF Executable and Linkable Format
GPMU Generic Payload Management Unit
interlocking system Railway system which estab-

lishes train routes by mean of points and signals.
MMDL Mode Management and Data Load
SIL Safety Integrity Level a relative level of risk-

reduction provided by a safety function.
PMU Payload Management Unit

6 For example, our solution won’t help for proving properties over unstructured data to be extracted from PDF documents.

Page 7/7


